Rice Science ›› 2015, Vol. 22 ›› Issue (1): 9-15.DOI: 10.1016/S1672-6308(14)60279-1
• Orginal Article • Previous Articles Next Articles
Hong-wei Zhang, Yu-yu Chen, Jun-yu Chen, Yu-jun Zhu, De-run Huang, Ye-yang Fan, Jie-yun Zhuang()
Received:
2014-08-21
Accepted:
2014-10-16
Online:
2015-01-10
Published:
2014-11-26
Hong-wei Zhang, Yu-yu Chen, Jun-yu Chen, Yu-jun Zhu, De-run Huang, Ye-yang Fan, Jie-yun Zhuang. Mapping of qTGW1.1, a Quantitative Trait Locus for 1000-Grain Weight in Rice (Oryza sativa L.)[J]. Rice Science, 2015, 22(1): 9-15.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.org/EN/10.1016/S1672-6308(14)60279-1
Generation | NIL name | Segregating region | Sample for two homozygous genotypes | Growing season |
---|---|---|---|---|
BC2F8:9 | C901 | RM11448-RM11522 | 24 lines for ZS97, 26 lines for MY46 | May-September, 2012 |
BC2F8:9 | C902 | RM11448-RM11549 | 23 lines for ZS97, 28 lines for MY46 | May-September, 2012 |
BC2F8:9 | C903 | RM1232-RM11615 | 24 lines for ZS97, 27 lines for MY46 | May-September, 2012 |
BC2F10:11 | C1001 | RM11543-RM11554 | 30 lines for ZS97, 30 lines for MY46 | April-August, 2013 |
BC2F10:11 | C1002 | RM11569-RM11625 | 30 lines for ZS97, 30 lines for MY46 | April-August, 2013 |
Table 1 Rice populations and field experiments.
Generation | NIL name | Segregating region | Sample for two homozygous genotypes | Growing season |
---|---|---|---|---|
BC2F8:9 | C901 | RM11448-RM11522 | 24 lines for ZS97, 26 lines for MY46 | May-September, 2012 |
BC2F8:9 | C902 | RM11448-RM11549 | 23 lines for ZS97, 28 lines for MY46 | May-September, 2012 |
BC2F8:9 | C903 | RM1232-RM11615 | 24 lines for ZS97, 27 lines for MY46 | May-September, 2012 |
BC2F10:11 | C1001 | RM11543-RM11554 | 30 lines for ZS97, 30 lines for MY46 | April-August, 2013 |
BC2F10:11 | C1002 | RM11569-RM11625 | 30 lines for ZS97, 30 lines for MY46 | April-August, 2013 |
Trait | NIL name | Values of the two homozygous genotypic groups (Mean ± SD) | P | A | R2 (%) | |
---|---|---|---|---|---|---|
Zhenshan 97 | Milyang 46 | |||||
TGW (g) | C901 | 27.08 ± 0.26 | 27.10 ± 0.33 | 0.8877 | ||
C902 | 27.49 ± 0.21 | 27.24 ± 0.34 | 0.0033 | -0.12 | 10.55 | |
C903 | 27.60 ± 0.34 | 27.32 ± 0.35 | 0.0065 | -0.14 | 8.3 | |
C1001 | 24.68 ± 0.37 | 24.43 ± 0.28 | 0.0043 | -0.13 | 15.19 | |
C1002 | 24.59 ± 0.71 | 24.76 ± 0.61 | 0.3269 | |||
GL (mm) | C901 | 8.658 ± 0.036 | 8.640 ± 0.035 | 0.0653 | ||
C902 | 8.888 ± 0.052 | 8.888 ± 0.063 | 0.9646 | |||
C903 | 8.819 ± 0.038 | 8.754 ± 0.045 | < 0.0001 | -0.032 | 23.93 | |
C1001 | 7.951 ± 0.064 | 7.915 ± 0.057 | 0.0297 | -0.018 | 8.57 | |
C1002 | 7.904 ± 0.114 | 7.929 ± 0.100 | 0.3882 | |||
GW (mm) | C901 | 3.002 ± 0.017 | 2.998 ± 0.017 | 0.5798 | ||
C902 | 2.980 ± 0.017 | 2.960 ± 0.018 | < 0.0001 | -0.011 | 17.3 | |
C903 | 2.978 ± 0.019 | 2.961 ± 0.020 | 0.0018 | -0.009 | 11.73 | |
C1001 | 2.913 ± 0.024 | 2.906 ± 0.019 | 0.2231 | |||
C1002 | 2.921 ± 0.032 | 2.918 ± 0.029 | 0.8199 | |||
HD (d) | C901 | 62.7 ± 0.8 | 62.4 ± 0.8 | 0.2234 | ||
C902 | 58.8 ± 0.6 | 59.0 ± 0.6 | 0.3662 | |||
C903 | 63.0 ± 1.1 | 63.4 ± 0.8 | 0.127 | |||
C1001 | 74.5 ± 0.6 | 74.5 ± 0.7 | 0.9086 | |||
C1002 | 72.3 ± 0.9 | 72.1 ± 0.7 | 0.3852 |
Table 2 QTL analysis for 1000-grain weight, grain length, grain width and heading date using five near isogenic line (NIL) populations.
Trait | NIL name | Values of the two homozygous genotypic groups (Mean ± SD) | P | A | R2 (%) | |
---|---|---|---|---|---|---|
Zhenshan 97 | Milyang 46 | |||||
TGW (g) | C901 | 27.08 ± 0.26 | 27.10 ± 0.33 | 0.8877 | ||
C902 | 27.49 ± 0.21 | 27.24 ± 0.34 | 0.0033 | -0.12 | 10.55 | |
C903 | 27.60 ± 0.34 | 27.32 ± 0.35 | 0.0065 | -0.14 | 8.3 | |
C1001 | 24.68 ± 0.37 | 24.43 ± 0.28 | 0.0043 | -0.13 | 15.19 | |
C1002 | 24.59 ± 0.71 | 24.76 ± 0.61 | 0.3269 | |||
GL (mm) | C901 | 8.658 ± 0.036 | 8.640 ± 0.035 | 0.0653 | ||
C902 | 8.888 ± 0.052 | 8.888 ± 0.063 | 0.9646 | |||
C903 | 8.819 ± 0.038 | 8.754 ± 0.045 | < 0.0001 | -0.032 | 23.93 | |
C1001 | 7.951 ± 0.064 | 7.915 ± 0.057 | 0.0297 | -0.018 | 8.57 | |
C1002 | 7.904 ± 0.114 | 7.929 ± 0.100 | 0.3882 | |||
GW (mm) | C901 | 3.002 ± 0.017 | 2.998 ± 0.017 | 0.5798 | ||
C902 | 2.980 ± 0.017 | 2.960 ± 0.018 | < 0.0001 | -0.011 | 17.3 | |
C903 | 2.978 ± 0.019 | 2.961 ± 0.020 | 0.0018 | -0.009 | 11.73 | |
C1001 | 2.913 ± 0.024 | 2.906 ± 0.019 | 0.2231 | |||
C1002 | 2.921 ± 0.032 | 2.918 ± 0.029 | 0.8199 | |||
HD (d) | C901 | 62.7 ± 0.8 | 62.4 ± 0.8 | 0.2234 | ||
C902 | 58.8 ± 0.6 | 59.0 ± 0.6 | 0.3662 | |||
C903 | 63.0 ± 1.1 | 63.4 ± 0.8 | 0.127 | |||
C1001 | 74.5 ± 0.6 | 74.5 ± 0.7 | 0.9086 | |||
C1002 | 72.3 ± 0.9 | 72.1 ± 0.7 | 0.3852 |
1 | Bai X F, Wu B, Xing Y Z.2012. Yield-related QTLs and their applications in rice genetic improvement.J Integr Plant Biol, 54: 300-311. |
2 | Chen X, Temnykh S, Xu Y, Cho Y G, McCouch S R.1997. Development of a microsatellite framework map providing genome-wide coverage in rice (Oryza sativa L.).Theor Appl Genet, 95: 553-567. |
3 | Dai W M, Zhang K Q, Wu J R, Wang L, Duan B W, Zheng K L, Cai R, Zhuang J Y.2008. Validating a segment on the short arm of chromosome 6 responsible for genetic variation in the hull silicon content and yield traits of rice.Euphytica, 160: 317-324. |
4 | Gong J L, Hu Y J, Long H Y, Chang Y, Li J, Zhang H C, Ma R R, Wang X Y, Dai Q G, Huo Z Y, Xu K, Wei H Y, Deng Z Z, Ming Q L.2012. Study on collaborating characteristics of grain yield components and panicle traits of large panicle hybrid japonica rice.Sci Agric Sin, 45: 2147-2158. (in Chinese with English abstract) |
5 | Gu M H.2010. Discussion on the aspects of high-yielding breeding in rice.Acta Agron Sin, 36: 1431-1439. (in Chinese with English abstract) |
6 | Guo L, Wang K, Chen J Y, Huang D R, Fan Y Y, Zhuang J Y.2013a. Dissection of two quantitative trait loci for grain weight linked in repulsion on the long arm of chromosome 1 of rice (Oryza sativa L.).Crop J, 1: 70-76. |
7 | Guo L, Zhang Z H, Zhuang J Y.2013b. Quantitative trait loci for heading date and their relationship with the genetic control of yield traits in rice (Oryza sativa).Rice Sci, 20: 1-12. |
8 | Hua J P, Xing Y Z, Xu C G, Sun X L, Yu S B, Zhang Q F.2002. Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance.Genetics, 162: 1885-1895. |
9 | Huang R Y, Jiang L R, Zheng J S, Wang T S, Wang H C, Huang Y M, Hong Z L.2013. Genetic bases of rice grain shape: So many genes, so little known.Trends Plant Sci, 18: 218-226. |
10 | Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B, Onishi A, Miyagawa H, Katoh E.2013. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield.Nat Genet, 45: 707-711. |
11 | Li J X, Yu S B, Xu C G, Tan Y F, Gao Y J, Li X H, Zhang Q F.2000. Analyzing quantitative trait loci for yield using a vegetatively replicated F2 population from a cross between the parents of an elite rice hybrid.Theor Appl Genet, 101: 248-254. |
12 | Li Y B, Fan C C, Xing Y Z, Yun P, Luo L J, Yan B, Peng B, Xie W B, Wang G W, Li X H, Xiao J H, Xu C G, He Y Q.2014. Chalk5 encodes a vacuolar H+-translocating pyrophosphatase influencing grain chalkiness in rice.Nat Genet, 46: 398-404. |
13 | Qi P, Lin Y S, Song X J, Shen J B, Huang W, Shan J X, Zhu M Z, Jiang L W, Gao J P, Lin H X.2012. The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1; 3.Cell Res, 22: 1666-1680. |
14 | SAS Institute Inc.1999. SAS/STAT User’s Guide. Cary, NC: SAS Institute. |
15 | Shao G N, Wei X J, Chen M L, Tang S Q, Luo J, Jiao G A, Xie L H, Hu P S.2012. Allelic variation for a candidate gene for GS7, responsible for grain shape in rice.Theor Appl Genet, 125: 1303-1312. |
16 | Song X J, Huang W, Shi M, Zhu M Z, Lin H X.2007. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase.Nat Genet, 39: 623-630. |
17 | Wang L L, Chen Y Y, Guo L, Zhang H W, Fan Y Y, Zhuang J Y.2014. Dissection of qTGW1.2 to three QTLs for grain weight and grain size in rice (Oryza sativa L.).Euphytica, DOI: 10.1007/s10681-014-1237-7. |
18 | Xie X B, Jin F X, Song M H, Suh J P, Hwang H G, Kim Y G, McCouch H G, Ahn Y G.2008. Fine mapping of a yield-enhancing QTL cluster associated with transgressive variation in an Oryza sativa × O. rufipogon cross.Theor Appl Genet, 116: 613-622. |
19 | Xing Y Z, Tan Y F, Hua J P, Sun X L, Xu C G, Zhang Q F.2002. Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice.Theor Appl Genet, 105: 248-257. |
20 | Yan W H, Liu H Y, Zhou X C, Li Q P, Zhang J, Lu L, Liu T M, Liu H J, Zhang C J, Zhang Z Y, Shen G J, Yao W, Chen H X, Yu S B, Xie W B, Xing Y Z.2013. Natural variation in Ghd7.1 plays an important role in grain yield and adaptation in rice.Cell Res, 23: 969-971. |
21 | Yu S B, Li J X, Xu C G, Tan Y F, Gao Y J, Li X H, Zhang Q F, Saghai Maroof M A.1997. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid.Proc Natl Acad Sci USA, 94: 9226-9231. |
22 | Yu S W, Yang C D, Fan Y Y, Zhuang J Y, Li X M.2008. Genetic dissection of a thousand-grain weight quantitative trait locus on rice chromosome 1.Chin Sci Bull, 53: 2326-2332. |
23 | Zhang X J, Wang J F, Huang J, Lan H X, Wang C L, Yin C F, Wu Y Y, Tang H J, Qian Q, Li J Y, Zhang H S.2012. Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice.Proc Natl Acad Sci USA, 109: 21534-21539. |
24 | Zheng K L, Huang N, Bennett J, Khush G S.1995. PCR-based marker-assisted selection in rice breeding: IRRI Discussion Paper Series No. 12. Los Banos, Phillipines: International Rice Research Institute: 1-4. |
25 | Zhuang J Y, Fan Y Y, Rao Z M, Wu J L, Xia Y W, Zheng K L.2002. Analysis on additive effects and additive-by-additive epistatic effects of QTLs for yield traits in a recombinant inbred line population of rice.Theor Appl Genet, 105: 1137-1145. |
[1] | Sundus ZAFAR, XU Jianlong. Recent Advances to Enhance Nutritional Quality of Rice [J]. Rice Science, 2023, 30(6): 4-. |
[2] | Shilin Ding, Chaolei Liu, Lianguang Shang, Shenglong Yang, Anpeng Zhang, Hongzhen Jiang, Banpu Ruan, Guonan Fang, Biao Tian, Guoyou Ye, Longbiao Guo, Qian Qian, Zhenyu Gao. Identification of QTLs for Cadmium Tolerance During Seedling Stage and Validation of qCDSL1 in Rice [J]. Rice Science, 2021, 28(1): 81-88. |
[3] | Hui Wang, Jiayu Zhang, Farkhanda Naz, Juan Li, Shuangfei Sun, Guanghua He, Ting Zhang, Yinghua Ling, Fangming Zhao. Identification of Rice QTLs for Important Agronomic Traits with Long-Kernel CSSL-Z741 and Three SSSLs [J]. Rice Science, 2020, 27(5): 414-422. |
[4] | Hussain Kashif, Yingxing Zhang, Anley Workie, Riaz Aamir, Abbas Adil, Hasanuzzaman Rani Md., Hong Wang, Xihong Shen, Liyong Cao, Shihua Cheng. Association Mapping of Quantitative Trait Loci for Grain Size in Introgression Line Derived from Oryza rufipogon [J]. Rice Science, 2020, 27(3): 246-254. |
[5] | Yuan Chen, Yuxiang Zeng, Zhijuan Ji, Yan Liang, Zhihua Wen, Changdeng Yang. Identification of Stable Quantitative Trait Loci for Sheath Blight Resistance Using Recombinant Inbred Line [J]. Rice Science, 2019, 26(5): 331-338. |
[6] | Wenhui Wang, Linlin Wang, Yujun Zhu, Yeyang Fan, Jieyun Zhuang. Fine-Mapping of qTGW1.2a, a Quantitative Trait Locus for 1000-Grain Weight in Rice [J]. Rice Science, 2019, 26(4): 220-228. |
[7] | Wenqiang Liu, Xiaowu Pan, Yongchao Li, Yonghong Duan, Jun Min, Sanxiong Liu, Licheng Liu, Xinnian Sheng, Xiaoxiang Li. Identification of QTLs and Validation of qCd-2 Associated with Grain Cadmium Concentrations in Rice [J]. Rice Science, 2019, 26(1): 42-49. |
[8] | Okechukwu Anyaoha Christian, Fofana Mamadou, Gracen Vernon, Tongoona Pangirayi, Mande Semon. Introgression of Two Drought QTLs into FUNAABOR-2 Early Generation Backcross Progenies Under Drought Stress at Reproductive Stage [J]. Rice Science, 2019, 26(1): 32-41. |
[9] | Zongxiang Chen, Zhiming Feng, Houxiang Kang, Jianhua Zhao, Tianxiao Chen, Qianqian Li, Hongbing Gong, Yafang Zhang, Xijun Chen, Xuebiao Pan, Wende Liu, Guoliang Wang, Shimin Zuo. Identification of New Resistance Loci Against Sheath Blight Disease in Rice Through Genome-Wide Association Study [J]. Rice Science, 2019, 26(1): 21-31. |
[10] | P. M. Swamy B., Kaladhar K., Anuradha K., K. Batchu Anil, Longvah T., Sarla N.. QTL Analysis for Grain Iron and Zinc Concentrations in Two O. nivara Derived Backcross Populations [J]. Rice Science, 2018, 25(4): 197-207. |
[11] | Yaobin Qin, Peng Cheng, Yichen Cheng, Yue Feng, Derun Huang, Tingxu Huang, Xianjun Song, Jiezheng Ying. QTL-Seq Identified a Major QTL for Grain Length and Weight in Rice Using Near Isogenic F2 Population [J]. Rice Science, 2018, 25(3): 121-131. |
[12] | Rekha Talukdar Preeti, Rathi Sunayana, Pathak Khanin, Kumar Chetia Sanjay, Nath Sarma Ramendra. Population Structure and Marker-Trait Association in Indigenous Aromatic Rice [J]. Rice Science, 2017, 24(3): 145-154. |
[13] | Anupam Alpana, Imam Jahangir, Mohammad Quatadah Syed, Siddaiah Anantha, Prasad Das Shankar, Variar Mukund, Prasad Mandal Nimai. Genetic Diversity Analysis of Rice Germplasm in Tripura State of Northeast India Using Drought and Blast Linked Markers [J]. Rice Science, 2017, 24(1): 10-20. |
[14] | Chao Xiang, Jie Ren, Xiu-qin Zhao, Zai-song Ding, Jing Zhang, Chao Wang, Jun-wei Zhang, Augustino Joseph Charles, Qiang Zhang, Yun-long Pang, Yong-ming Gao, Ying-yao Shi. Genetic Dissection of Low Phosphorus Tolerance Related Traits Using Selected Introgression Lines in Rice [J]. Rice Science, 2015, 22(6): 264-274. |
[15] | Yue Feng, Rong-rong Zhai, Ze-chuan Lin, Li-yong Cao, Xing-hua Wei, Shi-hua Cheng. Quantitative Trait Locus Analysis for Rice Yield Traits under Two Nitrogen Levels [J]. Rice Science, 2015, 22(3): 108-115. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||