Rice Science ›› 2023, Vol. 30 ›› Issue (6): 641-651.DOI: 10.1016/j.rsci.2023.08.002
• Research Papers • Previous Articles Next Articles
Raja Chakraborty1,2, Pratap Kalita1,3, Saikat Sen1()
Received:
2023-03-06
Accepted:
2023-08-03
Online:
2023-11-28
Published:
2023-08-10
Contact:
Saikat SEN (saikat.pharm@rediffmail.com; saikat.sen@adtu.in)
Raja Chakraborty, Pratap Kalita, Saikat Sen. Phenolic Profile, Antioxidant, Antihyperlipidemic and Cardiac Risk Preventive Effect of Pigmented Black Rice Variety Chakhao poireiton in High-Fat High-Sugar Induced Rats[J]. Rice Science, 2023, 30(6): 641-651.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1. Free radical scavenging activities of Chakhao poireiton rice extracts. DPPH•, 2,2-diphenyl-1-picryl-hydrazy radical; H2O2, Hydrogen peroxide; NO•, Nitric oxide radical; H2O-CP, Water extract of Chakhao poireiton; EtOH-CP, Ethanol extract of Chakhao poireiton; EtOAc-CP, Ethyl acetate extract of Chakhao poireiton; PetE-CP, Petroleum ether extract of Chakhao poireiton. Data are Mean ± SE (n = 3).
Fig. 2. 3-Hydroxy-3-methylglutaryl-CoA reductase inhibitory activity (A), and cholesterol esterase and pancreatic lipase inhibitory activities (B) of Chakhao poireiton rice extracts. H2O-CP, Water extract of Chakhao poireiton; EtOH-CP, Ethanol extract of Chakhao poireiton; EtOAc-CP, Ethyl acetate extract of Chakhao poireiton; PetE-CP, Petroleum ether extract of Chakhao poireiton. Data are Mean ± SE (n = 3). In A, ** and *** represent significant differences at the 0.01 and 0.001 levels when compared with the control.
Group | Lipid profile (mg/dL) | Liver function test (U/L) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
TC | TG | LDL-C | HDL-C | VLDL-C | SGOT | SGPT | ALP | ||||
Healthy control | 89.78 ± 1.62 | 85.12 ± 2.17 | 33.86 ± 1.10 | 40.80 ± 0.69 | 17.02 ± 0.43 | 83.28 ± 3.52 | 62.45 ± 2.03 | 163.17 ± 4.51 | |||
Disease control | 174.32 ± 3.53*** | 164.22 ± 4.45*** | 80.23 ± 1.63*** | 27.21 ± 1.29*** | 32.84 ± 0.89*** | 168.76 ± 16.88*** | 140.40 ± 14.65*** | 230.32 ± 14.00*** | |||
Atorvastatin (2 mg/kg) | 115.32 ± 3.66*** | 100.92 ± 3.54*** | 35.34 ± 1.40*** | 42.33 ± 1.72*** | 20.18 ± 0.71*** | 101.28 ± 4.35*** | 97.34 ± 4.19*** | 186.24 ± 7.69*** | |||
EtOH-CP (200 mg/kg) | 133.29 ± 4.44** | 109.49 ± 5.31*** | 36.40 ± 2.00*** | 38.63 ± 1.01** | 21.90 ± 1.06*** | 98.73 ± 3.32*** | 98.73 ± 3.24*** | 173.41 ± 6.67** | |||
EtOH-CP (400 mg/kg) | 114.61 ± 3.03*** | 101.33 ± 2.53*** | 35.98 ± 0.61*** | 42.20 ± 2.42*** | 20.27 ± 0.51*** | 90.33 ± 4.01*** | 87.82 ± 3.28*** | 167.80 ± 4.85*** |
Table 1. Effect of Chakhao poireiton rice extract on lipid profile and kidney function on high fat high sugar induced hyperlipidemia.
Group | Lipid profile (mg/dL) | Liver function test (U/L) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
TC | TG | LDL-C | HDL-C | VLDL-C | SGOT | SGPT | ALP | ||||
Healthy control | 89.78 ± 1.62 | 85.12 ± 2.17 | 33.86 ± 1.10 | 40.80 ± 0.69 | 17.02 ± 0.43 | 83.28 ± 3.52 | 62.45 ± 2.03 | 163.17 ± 4.51 | |||
Disease control | 174.32 ± 3.53*** | 164.22 ± 4.45*** | 80.23 ± 1.63*** | 27.21 ± 1.29*** | 32.84 ± 0.89*** | 168.76 ± 16.88*** | 140.40 ± 14.65*** | 230.32 ± 14.00*** | |||
Atorvastatin (2 mg/kg) | 115.32 ± 3.66*** | 100.92 ± 3.54*** | 35.34 ± 1.40*** | 42.33 ± 1.72*** | 20.18 ± 0.71*** | 101.28 ± 4.35*** | 97.34 ± 4.19*** | 186.24 ± 7.69*** | |||
EtOH-CP (200 mg/kg) | 133.29 ± 4.44** | 109.49 ± 5.31*** | 36.40 ± 2.00*** | 38.63 ± 1.01** | 21.90 ± 1.06*** | 98.73 ± 3.32*** | 98.73 ± 3.24*** | 173.41 ± 6.67** | |||
EtOH-CP (400 mg/kg) | 114.61 ± 3.03*** | 101.33 ± 2.53*** | 35.98 ± 0.61*** | 42.20 ± 2.42*** | 20.27 ± 0.51*** | 90.33 ± 4.01*** | 87.82 ± 3.28*** | 167.80 ± 4.85*** |
Group | LDH (U/L) | CK-NAC (U/L) | GSH (µmoL/L) | CAT (U/mg) | SOD (U/mg) | GPx (µg/mg) | PLP (nmoL/mL) |
---|---|---|---|---|---|---|---|
Healthy control | 580.33 ± 16.63 | 303.27 ± 12.37 | 199.98 ± 2.51 | 90.90 ± 2.36 | 84.21 ± 1.96 | 5.77 ± 0.09 | 3.13 ± 0.06 |
Disease control | 840.61 ± 33.57*** | 570.99 ± 9.86*** | 129.06 ± 2.41*** | 68.29 ± 2.07*** | 67.02 ± 2.10*** | 4.46 ± 0.23*** | 8.77 ± 0.26*** |
Atorvastatin (2 mg/kg) | 628.33 ± 12.86*** | 348.86 ± 5.70** | 201.14 ± 4.62*** | 94.91 ± 2.94*** | 87.92 ± 2.14*** | 6.22 ± 0.17*** | 4.03 ± 0.15*** |
EtOH-CP (200 mg/kg) | 645.00 ± 12.87*** | 409.41 ± 6.43** | 179.53 ± 3.51** | 81.02 ± 2.03*** | 82.29 ± 2.22** | 5.91 ± 0.24** | 4.25 ± 0.19*** |
EtOH-CP (400 mg/kg) | 637.20 ± 15.61*** | 330.13 ± 10.01*** | 197.61 ± 5.65*** | 97.33 ± 2.84*** | 90.13 ± 1.73*** | 6.26 ± 0.22*** | 3.52 ± 0.18*** |
Table 2. Effects of ethanol extract of Chakhao poireiton rice on LDH, CK-NAC, endogenous antioxidants and lipid peroxide.
Group | LDH (U/L) | CK-NAC (U/L) | GSH (µmoL/L) | CAT (U/mg) | SOD (U/mg) | GPx (µg/mg) | PLP (nmoL/mL) |
---|---|---|---|---|---|---|---|
Healthy control | 580.33 ± 16.63 | 303.27 ± 12.37 | 199.98 ± 2.51 | 90.90 ± 2.36 | 84.21 ± 1.96 | 5.77 ± 0.09 | 3.13 ± 0.06 |
Disease control | 840.61 ± 33.57*** | 570.99 ± 9.86*** | 129.06 ± 2.41*** | 68.29 ± 2.07*** | 67.02 ± 2.10*** | 4.46 ± 0.23*** | 8.77 ± 0.26*** |
Atorvastatin (2 mg/kg) | 628.33 ± 12.86*** | 348.86 ± 5.70** | 201.14 ± 4.62*** | 94.91 ± 2.94*** | 87.92 ± 2.14*** | 6.22 ± 0.17*** | 4.03 ± 0.15*** |
EtOH-CP (200 mg/kg) | 645.00 ± 12.87*** | 409.41 ± 6.43** | 179.53 ± 3.51** | 81.02 ± 2.03*** | 82.29 ± 2.22** | 5.91 ± 0.24** | 4.25 ± 0.19*** |
EtOH-CP (400 mg/kg) | 637.20 ± 15.61*** | 330.13 ± 10.01*** | 197.61 ± 5.65*** | 97.33 ± 2.84*** | 90.13 ± 1.73*** | 6.26 ± 0.22*** | 3.52 ± 0.18*** |
Fig. 3. Effects of Chakhao poireiton on CRP, Lp(a), ApoA1, ApoB, and ApoB/ApoA1 (A), and on atherogenic indices (B). EtOH-CP, Ethanol extract Chakhao poireiton; CRP, C-reactive protein; Lp(a), Lipoprotein a; ApoA1, Apolipoprotein A1; ApoB, Apolipoprotein B. Data are Mean ± SE (n = 6). ** and *** represent significant differences at the 0.01 and 0.001 levels, when comparing the disease control group with the healthy control group, as well as comparing the extract/standard treated groups with the disease control group (Analysis of variance followed by the Tukey test).
Fig. 5. Antioxidant, antihyperlipidemic and cardiac risk preventing effect of Chakhao poireiton and possible mechanism of action. TG, Triglyceride; MG, Monoglyceride; FFA, Free fatty acid; CH, Cholesterol; HMG CoA, β-hydroxy β-methylglutaryl-CoA; VLDL-C, Very low density lipoprotein cholesterol; LDL-C, Low density lipoprotein cholesterol; IDL-C, Intermediate density lipoprotein cholesterol; HDL-C, High density lipoprotein cholesterol; LDL-R, Low density lipoprotein receptor; LCAT, Lecithin-cholesterol acyltransferase; GSH, Reduced glutathione; CAT, Catalase; SOD, Superoxide dismutase; GPx, Glutathione peroxide; LDH, Lactate dehydrogenase; CK-NAC, Creatine kinase-NAC; SGOT, Serum glutamic oxaloacetate transaminase; SGPT, Serum glutamic pyruvic transaminase; ALP, Alkaline phosphatase; ApoA1, Apolipoprotein A1; ApoB, Apolipoprotein B.
[1] | Aquilano K, Baldelli S, Ciriolo M R. 2014. Glutathione: New roles in redox signaling for an old antioxidant. Front Pharmacol, 5: 196. |
[2] | Aramwit P, Supasyndh O, Siritienthong T, Bang N. 2013. Mulberry leaf reduces oxidation and C-reactive protein level in patients with mild dyslipidemia. Biomed Res Int, 2013: 787981. |
[3] | Arora M K, Pandey S, Tomar R, Sahoo J, Kumar D, Jangra A. 2022. Therapeutic potential of policosanol in the concurrent management of dyslipidemia and non-alcoholic fatty liver disease. Fut J Pharma Sci, 8: 11. |
[4] | Asem I D, Imotomba R K, Mazumder P B, Laishram J M. 2015. Anthocyanin content in the black scented rice (Chakhao): Its impact on human health and plant defense. Symbiosis, 66(1): 47-54. |
[5] | Bae H J, Rico C W, Ryu S N, Kang M Y. 2014. Hypolipidemic, hypoglycemic, and antioxidative effects of a new pigmented rice cultivar ‘Superjami’ in high fat-fed mice. J Korean Soc Appl Biol Chem, 57(5): 685-691. |
[6] | Baskaran G, Salvamani S, Ahmad S A, Shaharuddin N A, Pattiram P D, Shukor M Y. 2015. HMG-CoA reductase inhibitory activity and phytocomponent investigation of Basella alba leaf extract as a treatment for hypercholesterolemia. Drug Des Devel Ther, 9: 509-517. |
[7] | Bhat F M, Riar C S. 2017. Characterizing the pigmented traditional rice cultivars grown in temperate regions of Kashmir (India) for free and bound phenolics compounds and in vitro antioxidant properties. J Cereal Sci, 76: 253-262. |
[8] | Bhuvaneswari S, Gopala Krishnan S, Bollinedi H, Saha S, Ellur R K, Vinod K K, Singh I M, Prakash N, Bhowmick P K, Nagarajan M, Singh N K, Singh A K. 2020. Genetic architecture and anthocyanin profiling of aromatic rice from Manipur reveals divergence of Chakhao landraces. Front Genet, 11: 570731. |
[9] | Birari R B, Bhutani K K. 2007. Pancreatic lipase inhibitors from natural sources: Unexplored potential. Drug Discov Today, 12(19/20): 879-889. |
[10] | Borah N, Athokpam F D, Semwal R L, Garkoti S C. 2018. Chakhao (Black Rice; Oryza sativa L.): A culturally important and stress tolerant traditional rice variety of Manipur. Indian J Tradit Knowl, 17(4): 789-794. |
[11] | Chandra A, Ali Mahdi A, Ahmad S, Singh R K. 2007. Indian herbs result in hypoglycemic responses in streptozotocin-induced diabetic rats. Nutr Res, 27(3): 161-168. |
[12] | Devi L M, Badwaik L S. 2022. Variety difference in physico-chemical, cooking, textural, pasting and phytochemical properties of pigmented rice. Food Chem Adv, 1: 100059. |
[13] | Devi S, Singh R. 2017. Evaluation of antioxidant and anti- hypercholesterolemic potential of Vitis vinifera leaves. Food Sci Hum Wellness, 6(3): 131-136. |
[14] | Ed Nignpense B, Latif S, Francis N, Blanchard C, Santhakumar A B. 2022a. The impact of simulated gastrointestinal digestion on the bioaccessibility and antioxidant activity of purple rice phenolic compounds. Food Biosci, 47: 101706. |
[15] | Ed Nignpense B, Latif S, Francis N, Blanchard C, Santhakumar A B. 2022b. Bioaccessibility and antioxidant activity of polyphenols from pigmented barley and wheat. Foods, 11(22): 3697. |
[16] | Forbes C A, Quek R G W, Deshpande S, Worthy G, Wolff R, Stirk L, Kleijnen J, Gandra S R, Djedjos S, Wong N D. 2016. The relationship between Lp(a) and CVD outcomes: A systematic review. Lipids Health Dis, 15: 95. |
[17] | Hassan S, El-Twab S A, Hetta M, Mahmoud B. 2011. Improvement of lipid profile and antioxidant of hypercholesterolemic albino rats by polysaccharides extracted from the green alga Ulva lactuca Linnaeus. Saudi J Biol Sci, 18(4): 333-340. |
[18] | Heidrich J E, Contos L M, Hunsaker L A, Deck L M, Vander Jagt D L. 2004. Inhibition of pancreatic cholesterol esterase reduces cholesterol absorption in the hamster. BMC Pharmacol, 4: 5. |
[19] | Ighodaro O M, Akinloye O A. 2018. First line defence antioxidants- superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alex J Med, 54(4): 287-293. |
[20] | Jang H H, Park M Y, Kim H W, Lee Y M, Hwang K A, Park J H, Park D S, Kwon O. 2012. Black rice (Oryza sativa L.) extract attenuates hepatic steatosis in C57BL/6 J mice fed a high-fat diet via fatty acid oxidation. Nutr Metab, 9(1): 27. |
[21] | Jaradat N, Zaid A N, Hussein F, Zaqzouq M, Aljammal H, Ayesh O. 2017. Anti-lipase potential of the organic and aqueous extracts of ten traditional edible and medicinal plants in Palestine; a comparison study with orlistat. Medicines, 4(4): 89. |
[22] | Kumari S, Elancheran R, Devi R. 2018. Phytochemical screening, antioxidant, antityrosinase, and antigenotoxic potential of Amaranthus viridis extract. Indian J Pharmacol, 50(3): 130-138. |
[23] | Liu T T, Liu X T, Chen Q X, Shi Y. 2020. Lipase inhibitors for obesity: A review. Biomed Pharmacother, 128: 110314. |
[24] | Lu M, Lu Q, Zhang Y, Tian G. 2011. ApoB/apoA1 is an effective predictor of coronary heart disease risk in overweight and obesity. J Biomed Res, 25(4): 266-273. |
[25] | Miller M. 2009. Dyslipidemia and cardiovascular risk: The importance of early prevention. QJM, 102(9): 657-667. |
[26] | Mishra R D. 2014. Anti hyperlipidemic effects of various medicinal plant extracts on high fat diet-induced obese rat models. Mumbai, India: SVKM’s Narsee Monjee Institute of Management Studies. |
[27] | Moirangthem K, Ramakrishna P, Amer M H, Tucker G A. 2021. Bioactivity and anthocyanin content of microwave-assisted subcritical water extracts of Manipur black rice (Chakhao) bran and straw. Future Foods, 3: 100030. |
[28] | Munshi R P, Joshi S G, Rane B N. 2014. Development of an experimental diet model in rats to study hyperlipidemia and insulin resistance, markers for coronary heart disease. Indian J Pharmacol, 46(3): 270-276. |
[29] | Oršolić N, Landeka Jurčević I, Đikić D, Rogić D, Odeh D, Balta V, Perak Junaković E, Terzić S, Jutrić D. 2019. Effect of Propolis on diet-induced hyperlipidemia and atherogenic indices in mice. Antioxidants, 8(6): 156. |
[30] | Packard C J, Boren J, Taskinen M R. 2020. Causes and consequences of hypertriglyceridemia. Front Endocrinol, 11: 252. |
[31] | Parvathy R, Mohanlal S, Pushpan C, Helen A, Jayalekshmy A. 2014. Antioxidant properties, anti-inflammatory effects, and bioactive constituents of the Indian medicinal rice Njavara yellow compared with staple varieties. Food Sci Biotechnol, 23(5): 1379-1388. |
[32] | Saeedi R, Frohlich J. 2016. Lipoprotein (a), an independent cardiovascular risk marker. Clin Diabetes Endocrinol, 2: 7. |
[33] | Samyor D, Deka S C, Das A B. 2016. Phytochemical and antioxidant profile of pigmented and non-pigmented rice cultivars of Arunachal pradesh, India. Int J Food Prop, 19(5): 1104-1114. |
[34] | Samyor D, Das A B, Deka S C. 2017. Pigmented rice a potential source of bioactive compounds: A review. Int J Food Sci Technol, 52(5): 1073-1081. |
[35] | Sangkitikomol W, Tencomnao T, Rocejanasaroj A. 2010. Effects of Thai black sticky rice extract on oxidative stress and lipid metabolism gene expression in HepG2 cells. Genet Mol Res, 9(4): 2086-2095. |
[36] | Sen S, De B, Devanna N, Chakraborty R. 2013. Total phenolic, total flavonoid content, and antioxidant capacity of the leaves of Meyna spinosa Roxb., an Indian medicinal plant. Chin J Nat Med, 11(2): 149-157. |
[37] | Sen S, Chakraborty R, Kalita P. 2020. Rice: Not just a staple food: A comprehensive review on its phytochemicals and therapeutic potential. Trends Food Sci Technol, 97: 265-285. |
[38] | Sen S, Kalita P, Chakraborty R. 2022. Evaluation of hypolipidemic, antioxidant, atherogenic index and cardiac risk suppressing effects of unpolished maniki madhuri rice extract and HPLC analysis of phenolics compounds. J Cereal Sci, 108: 103581. |
[39] | Shahidi F, Ambigaipalan P. 2015. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects: A review. J Funct Foods, 18: 820-897. |
[40] | Shao Y F, Xu F F, Sun X, Bao J S, Beta T. 2014a. Identification and quantification of phenolic acids and anthocyanins as antioxidants in bran, embryo and endosperm of white, red and black rice kernels (Oryza sativa L.). J Cereal Sci, 59(2): 211-218. |
[41] | Shao Y F, Xu F F, Sun X, Bao J S, Beta T. 2014b. Phenolic acids, anthocyanins, and antioxidant capacity in rice (Oryza sativa L.) grains at four stages of development after flowering. Food Chem, 143: 90-96. |
[42] | Singh S P, Vanlalsanga, Mehta S K, Singh Y T. 2022. New insight into the pigmented rice of northeast India revealed high antioxidant and mineral compositions for better human health. Heliyon, 8(8): e10464. |
[43] | Soppert J, Lehrke M, Marx N, Jankowski J, Noels H. 2020. Lipoproteins and lipids in cardiovascular disease: From mechanistic insights to therapeutic targeting. Adv Drug Deliv Rev, 159: 4-33. |
[44] | Thongtang N, Sukmawan R, Llanes E J B, Lee Z V. 2022. Dyslipidemia management for primary prevention of cardiovascular events: Best in-clinic practices. Prev Med Rep, 27: 101819. |
[45] | Walldius G, Jungner I. 2006. The apoB/apoA-I ratio: A strong, new risk factor for cardiovascular disease and a target for lipid-lowering therapy: A review of the evidence. J Intern Med, 259(5): 493-519. |
[46] | Zern T L, Fernandez M L. 2005. Cardioprotective effects of dietary polyphenols. J Nutr, 135(10): 2291-2294. |
[1] | Md. Forshed Dewan, Md. Ahiduzzaman, Md. Nahidul Islam, Habibul Bari Shozib. Potential Benefits of Bioactive Compounds of Traditional Rice Grown in South and Southeast Asia: A Review [J]. Rice Science, 2023, 30(6): 537-551. |
[2] | Jiang Changjie, Liang Zhengwei, Xie Xianzhi. Priming for Saline-Alkaline Tolerance in Rice: Current Knowledge and Future Challenges [J]. Rice Science, 2023, 30(5): 417-425. |
[3] | Salar Monajjem, Elias Soltani, Ebrahim Zainali, Masoud Esfahani, Farshid Ghaderi-Far, Maryam Hosseini Chaleshtori, Atefeh Rezaei. Seed Priming Improves Enzymatic and Biochemical Performances of Rice During Seed Germination under Low and High Temperatures [J]. Rice Science, 2023, 30(4): 335-347. |
[4] | Jiratchaya Wisetkomolmat, Chaiwat Arjin, Surat Hongsibsong, Warintorn Ruksiriwanich, Chutamat Niwat, Pimsiri Tiyayon, Sansanee Jamjod, Supapohn Yamuangmorn, Chanakan Prom-U-Thai, Korawan Sringarm. Antioxidant Activities and Characterization of Polyphenols from Selected Northern Thai Rice Husks: Relation with Seed Attributes [J]. Rice Science, 2023, 30(2): 148-159. |
[5] | Yousef Alhaj Hamoud, Hiba Shaghaleh, Wang Ruke, Willy Franz Gouertoumbo, Amar Ali Adam hamad, Mohamed Salah Sheteiwy, Wang Zhenchang, Guo Xiangping. Wheat Straw Burial Improves Physiological Traits, Yield and Grain Quality of Rice by Regulating Antioxidant System and Nitrogen Assimilation Enzymes under Alternate Wetting and Drying Irrigation [J]. Rice Science, 2022, 29(5): 473-488. |
[6] | Chunquan Zhu, Wenjun Hu, Xiaochuang Cao, Lianfeng Zhu, Yali Kong, Qianyu Jin, Guoxin Shen, Weipeng Wang, Hui Zhang, Junhua Zhang. Physiological and Proteomic Analyses Reveal Effects of Putrescine-Alleviated Aluminum Toxicity in Rice Roots [J]. Rice Science, 2021, 28(6): 579-593. |
[7] | Qina Huang, Yinliang Wu, Guosheng Shao. Root Aeration Promotes Cadmium Accumulation in Rice by Regulating Iron Uptake-Associated System [J]. Rice Science, 2021, 28(5): 511-520. |
[8] | Singh Priyanka, Pokharia Chitra, Shah Kavita. Exogenous Peroxidase Mitigates Cadmium Toxicity, Enhances Rhizobial Population and Lowers Root Knot Formation in Rice Seedlings [J]. Rice Science, 2021, 28(2): 166-177. |
[9] | Dey Nivedita, Bhattacharjee Soumen. Accumulation of Polyphenolic Compounds and Osmolytes under Dehydration Stress and Their Implication in Redox Regulation in Four Indigenous Aromatic Rice Cultivars [J]. Rice Science, 2020, 27(4): 329-344. |
[10] | Yamuangmorn Supaporn, Dell Bernard, Prom-u-thai Chanakan. Effects of Cooking on Anthocyanin Concentration and Bioactive Antioxidant Capacity in Glutinous and Non-Glutinous Purple Rice [J]. Rice Science, 2018, 25(5): 270-278. |
[11] | Kalita Jyotirmay, Kumar Pradhan Amit, Moni Shandilya Zina, Tanti Bhaben. Arsenic Stress Responses and Tolerance in Rice: Physiological, Cellular and Molecular Approaches [J]. Rice Science, 2018, 25(5): 235-249. |
[12] | Nahar Shamsun, R. Vemireddy Lakshminarayana, Sahoo Lingaraj, Tanti Bhaben. Antioxidant Protection Mechanisms Reveal Significant Response in Drought-Induced Oxidative Stress in Some Traditional Rice of Assam, India [J]. Rice Science, 2018, 25(4): 185-196. |
[13] | Kaur Maninder, Asthir Bavita, Mahajan Gulshan. Variation in Antioxidants, Bioactive Compounds and Antioxidant Capacity in Germinated and Ungerminated Grains of Ten Rice Cultivars [J]. Rice Science, 2017, 24(6): 349-359. |
[14] | Swapna Simon, Samban Shylaraj Korukkanvilakath. Screening for Osmotic Stress Responses in Rice Varieties under Drought Condition [J]. Rice Science, 2017, 24(5): 253-263. |
[15] | Koteswara Reddy Chagam, Kimi Lalmuan, Haripriya Sundaramoorthy, Kang Nayoung. Effects of Polishing on Proximate Composition, Physico- Chemical Characteristics, Mineral Composition and Antioxidant Properties of Pigmented Rice [J]. Rice Science, 2017, 24(5): 241-252. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||