Rice Science ›› 2023, Vol. 30 ›› Issue (6): 523-536.DOI: 10.1016/j.rsci.2023.05.004
• Reviews • Previous Articles Next Articles
Sundus Zafar1,2, Xu Jianlong2,3()
Received:
2022-12-10
Accepted:
2023-05-25
Online:
2023-11-28
Published:
2023-08-10
Contact:
Xu Jianlong (xujlcaas@126.com)
Sundus Zafar, Xu Jianlong. Recent Advances to Enhance Nutritional Quality of Rice[J]. Rice Science, 2023, 30(6): 523-536.
Add to citation manager EndNote|Ris|BibTeX
Nutrient | Rice | Maize | Wheat | Soybean | Potato |
---|---|---|---|---|---|
Protein (g/kg) | 71.0 | 98.0 | 137.0 | 130.0 | 20.0 |
Carbohydrate (g/kg) | 800.0 | 600.0 | 710.0 | 110.0 | 170.0 |
Fat (g/kg) | 22.0 | 11.8 | 24.7 | 68.0 | 1.0 |
Iron (mg/kg) | 43.1 | 30.0 | 35.2 | 35.5 | 7.8 |
Zinc (mg/kg) | 20.0 | 30.0 | 41.6 | 2.9 | 9.9 |
Selenium (μg/kg) | 6.0 | 151.0 | 894.0 | 15.0 | 3.0 |
Beta-carotene (mg/kg) | 0.0 | 3.7 | 0.2 | 0.0 | 0.0 |
Riboflavin (mg/kg) | 0.5 | 0.6 | 1.2 | 1.8 | 0.3 |
Thiamin (mg/kg) | 5.8 | 2.0 | 4.2 | 4.4 | 0.8 |
Vitamin E (mg/kg) | 1.1 | 0.7 | 0.0 | 0.1 | 0.0 |
Lysine (g/g N) | 3.7 | 2.3 | 2.7 | 6.5 | 6.3 |
Threonine (g/g N) | 3.4 | 3.3 | 2.8 | 3.6 | 4.0 |
Tryptophan (g/g N) | 1.3 | 0.7 | 1.5 | 1.0 | 1.5 |
Table 1. Comparison of nutrient content in different staple crops.
Nutrient | Rice | Maize | Wheat | Soybean | Potato |
---|---|---|---|---|---|
Protein (g/kg) | 71.0 | 98.0 | 137.0 | 130.0 | 20.0 |
Carbohydrate (g/kg) | 800.0 | 600.0 | 710.0 | 110.0 | 170.0 |
Fat (g/kg) | 22.0 | 11.8 | 24.7 | 68.0 | 1.0 |
Iron (mg/kg) | 43.1 | 30.0 | 35.2 | 35.5 | 7.8 |
Zinc (mg/kg) | 20.0 | 30.0 | 41.6 | 2.9 | 9.9 |
Selenium (μg/kg) | 6.0 | 151.0 | 894.0 | 15.0 | 3.0 |
Beta-carotene (mg/kg) | 0.0 | 3.7 | 0.2 | 0.0 | 0.0 |
Riboflavin (mg/kg) | 0.5 | 0.6 | 1.2 | 1.8 | 0.3 |
Thiamin (mg/kg) | 5.8 | 2.0 | 4.2 | 4.4 | 0.8 |
Vitamin E (mg/kg) | 1.1 | 0.7 | 0.0 | 0.1 | 0.0 |
Lysine (g/g N) | 3.7 | 2.3 | 2.7 | 6.5 | 6.3 |
Threonine (g/g N) | 3.4 | 3.3 | 2.8 | 3.6 | 4.0 |
Tryptophan (g/g N) | 1.3 | 0.7 | 1.5 | 1.0 | 1.5 |
Nutrient | Brown rice | White rice |
---|---|---|
Carbohydrate (g) | 51.70 | 53.20 |
Protein (g) | 5.54 | 4.43 |
Fat (g) | 1.96 | 0.39 |
Calorie (kcal) | 248.00 | 242.00 |
Iron (mg) | 1.10 | 2.80 |
Zinc (mg) | 1.40 | 0.80 |
Magnesium (mg) | 78.80 | 24.20 |
Copper (mg) | 0.20 | 0.10 |
Phosphorus (mg) | 208.00 | 68.80 |
Manganese (mg) | 2.00 | 0.70 |
Thiamine (mg) | 0.40 | 0.30 |
Folate (mg) | 18.20 | 108.00 |
Niacin (mg) | 5.20 | 3.40 |
Table 2. Comparison of nutritional values in brown and white rice (200 g of white rice or brown rice).
Nutrient | Brown rice | White rice |
---|---|---|
Carbohydrate (g) | 51.70 | 53.20 |
Protein (g) | 5.54 | 4.43 |
Fat (g) | 1.96 | 0.39 |
Calorie (kcal) | 248.00 | 242.00 |
Iron (mg) | 1.10 | 2.80 |
Zinc (mg) | 1.40 | 0.80 |
Magnesium (mg) | 78.80 | 24.20 |
Copper (mg) | 0.20 | 0.10 |
Phosphorus (mg) | 208.00 | 68.80 |
Manganese (mg) | 2.00 | 0.70 |
Thiamine (mg) | 0.40 | 0.30 |
Folate (mg) | 18.20 | 108.00 |
Niacin (mg) | 5.20 | 3.40 |
Nutrient | Gene | Expression level | Reference |
---|---|---|---|
Lysine | DHPS | 2.5-fold | Lee et al, |
AK + DHPS | 60-fold | Long et al, | |
RLRH1, RLRH2 | 35-fold | Wong et al, | |
AK + DHPS | 25-fold | Yang et al, | |
LRP | 30-fold | Liu et al, | |
β-Carotene | psy+ crtI + lcy | Ye et al, | |
Maize Psy | 23-fold | Paine et al, | |
Folate | Pterin + Aminobenzoate | 10-fold | Storozhenko et al, |
Fe | SoyferH1 | 2-fold | Goto et al, |
OsNAS3 | 2.9-fold | Lee and An, | |
OsNAS2 | 4.2-fold | Johnson et al, | |
OsVIT1, OsVIT2 | 1.4-fold | Bashir et al, | |
Fe and Zn | OsYSL2 | 4-fold Fe; 4-fold Zn | Ishimaru et al, |
OsNAS1, OsNAS2, OsNAS3 | 2-fold Fe; 2-fold Zn | Johnson et al, | |
Osfer2 | 2.09-fold Fe; 1.37-fold Zn | Paul et al, | |
α-Linolenic acid | OsFAD3 | 23.8- to 27.9-fold | Liu et al, |
Table 3. Genetic engineering approaches to incorporate nutritional genes into rice varieties.
Nutrient | Gene | Expression level | Reference |
---|---|---|---|
Lysine | DHPS | 2.5-fold | Lee et al, |
AK + DHPS | 60-fold | Long et al, | |
RLRH1, RLRH2 | 35-fold | Wong et al, | |
AK + DHPS | 25-fold | Yang et al, | |
LRP | 30-fold | Liu et al, | |
β-Carotene | psy+ crtI + lcy | Ye et al, | |
Maize Psy | 23-fold | Paine et al, | |
Folate | Pterin + Aminobenzoate | 10-fold | Storozhenko et al, |
Fe | SoyferH1 | 2-fold | Goto et al, |
OsNAS3 | 2.9-fold | Lee and An, | |
OsNAS2 | 4.2-fold | Johnson et al, | |
OsVIT1, OsVIT2 | 1.4-fold | Bashir et al, | |
Fe and Zn | OsYSL2 | 4-fold Fe; 4-fold Zn | Ishimaru et al, |
OsNAS1, OsNAS2, OsNAS3 | 2-fold Fe; 2-fold Zn | Johnson et al, | |
Osfer2 | 2.09-fold Fe; 1.37-fold Zn | Paul et al, | |
α-Linolenic acid | OsFAD3 | 23.8- to 27.9-fold | Liu et al, |
Trait | Chromosome | QTL | PVE (%) | Marker | Population | Reference |
---|---|---|---|---|---|---|
Zn Zn | 1, 12 6, 8 | qZn1, qZn12 qZn6, qZn8 | 13‒15 | RM34‒RM237, RM235‒RM17 RZ398‒RM204, RM25‒R1629 | DH RIL | Stangoulis et al, Lu et al, |
Zn Zn | 8 3, 7, 12 | qZn8-1 qZn3, qZn7.3, qZn12.2 | 11‒19 29‒71 | RM152 RM7‒RM517, RM501‒OsZip, RM260‒RM7102 | IL RIL | Garcia-Oliveira et al, Anuradha et al, |
Zn | 2, 9, 10 | qGZn2-1, qGZn2-2, qGZn9, qGZn10 | 15.2‒21.9 | RM573, RM6, RM24085‒RM566, RM171‒RM590 | BRIL | Ishikawa et al, |
Zn | 2, 5, 9, 11 | qZn2.1, qZn5.1, qZn9.1, qZn11.1 | 8.6‒27.7 | DH | Descalsota-Empleo et al, | |
Fe | 2, 8, 12 | qFe2, qFe8, qFe12 | 14‒18 | RM53‒RM300, RM137‒RM325A, RM270‒RM17 | DH | Stangoulis et al, |
Fe | 1, 11 | qFe1, qFe11 | RM259‒RM243, RZ536‒TEL3 | RIL | Lu et al, | |
Fe | 5, 6 | qFC-5, qFC-6 | RG480‒RM274, RM190‒RZ516 | RIL | Yu et al, | |
Fe | 1, 5, 7, 12 | qFe1.1, qFe5.1, qFe7.1, qFe12.2, qFe12.1 | 29‒71 | RM243‒RM48, RM574‒RM122, RM234‒RM248, M260‒RM7102, RM17‒RM260 | RIL | Anuradha et al, |
Ca | 1, 5 | qCa1-1, qCa5-1 | RM6480, RM598 | IL | Garcia-Oliveira et al, | |
Mg | 6, 10, 11 | qMg6, qMg10, qMg11 | OSR21, RM467, RM332 | RIL | Zhang et al, | |
P | 1 | qP1 | RM3411 | RIL | Zhang et al, | |
Mn | 7 | qMn7 | RM214 | RIL | Zhang et al, | |
Folate | 3 | qQTF-3-1, qQTF-3-2, qQTF-3-3 | 7.8, 11.1‒15.8, 25.3 | Q12010‒A10050, RM156‒RM16, C944‒R2856 | RIL, BIL | Dong et al, |
GPC | 6, 7 | qPc6, qPc7 | 13.0, 6.0 | C952‒Wx, R1245‒RM234 | RIL | Tan et al, |
GPC | 1, 2, 6, 12 | Pro1, Pro2, Pro6, Pro12 | 4.8‒15.0 | RM226‒RM297, RM6‒RM1112, RM190‒RM253, RM209‒RM229 | DH | Aluko et al, |
GPC GPC | 1 1, 2, 7 | qPC-1 qGPC1.1, qSGPC2.1, qSGPC7.1 | 10.0‒15.4 13, 14, 7.8 | CSSL BC3F4 | Yang et al, Chattopadhyay et al, | |
PC | 3 | qPC-3 | RM251‒RM282 | RIL | Yu et al, | |
PC | 1 | qPr1 | RM493‒RM562 | RIL | Zhong et al, |
Table 4. QTLs associated with different nutritional traits in rice.
Trait | Chromosome | QTL | PVE (%) | Marker | Population | Reference |
---|---|---|---|---|---|---|
Zn Zn | 1, 12 6, 8 | qZn1, qZn12 qZn6, qZn8 | 13‒15 | RM34‒RM237, RM235‒RM17 RZ398‒RM204, RM25‒R1629 | DH RIL | Stangoulis et al, Lu et al, |
Zn Zn | 8 3, 7, 12 | qZn8-1 qZn3, qZn7.3, qZn12.2 | 11‒19 29‒71 | RM152 RM7‒RM517, RM501‒OsZip, RM260‒RM7102 | IL RIL | Garcia-Oliveira et al, Anuradha et al, |
Zn | 2, 9, 10 | qGZn2-1, qGZn2-2, qGZn9, qGZn10 | 15.2‒21.9 | RM573, RM6, RM24085‒RM566, RM171‒RM590 | BRIL | Ishikawa et al, |
Zn | 2, 5, 9, 11 | qZn2.1, qZn5.1, qZn9.1, qZn11.1 | 8.6‒27.7 | DH | Descalsota-Empleo et al, | |
Fe | 2, 8, 12 | qFe2, qFe8, qFe12 | 14‒18 | RM53‒RM300, RM137‒RM325A, RM270‒RM17 | DH | Stangoulis et al, |
Fe | 1, 11 | qFe1, qFe11 | RM259‒RM243, RZ536‒TEL3 | RIL | Lu et al, | |
Fe | 5, 6 | qFC-5, qFC-6 | RG480‒RM274, RM190‒RZ516 | RIL | Yu et al, | |
Fe | 1, 5, 7, 12 | qFe1.1, qFe5.1, qFe7.1, qFe12.2, qFe12.1 | 29‒71 | RM243‒RM48, RM574‒RM122, RM234‒RM248, M260‒RM7102, RM17‒RM260 | RIL | Anuradha et al, |
Ca | 1, 5 | qCa1-1, qCa5-1 | RM6480, RM598 | IL | Garcia-Oliveira et al, | |
Mg | 6, 10, 11 | qMg6, qMg10, qMg11 | OSR21, RM467, RM332 | RIL | Zhang et al, | |
P | 1 | qP1 | RM3411 | RIL | Zhang et al, | |
Mn | 7 | qMn7 | RM214 | RIL | Zhang et al, | |
Folate | 3 | qQTF-3-1, qQTF-3-2, qQTF-3-3 | 7.8, 11.1‒15.8, 25.3 | Q12010‒A10050, RM156‒RM16, C944‒R2856 | RIL, BIL | Dong et al, |
GPC | 6, 7 | qPc6, qPc7 | 13.0, 6.0 | C952‒Wx, R1245‒RM234 | RIL | Tan et al, |
GPC | 1, 2, 6, 12 | Pro1, Pro2, Pro6, Pro12 | 4.8‒15.0 | RM226‒RM297, RM6‒RM1112, RM190‒RM253, RM209‒RM229 | DH | Aluko et al, |
GPC GPC | 1 1, 2, 7 | qPC-1 qGPC1.1, qSGPC2.1, qSGPC7.1 | 10.0‒15.4 13, 14, 7.8 | CSSL BC3F4 | Yang et al, Chattopadhyay et al, | |
PC | 3 | qPC-3 | RM251‒RM282 | RIL | Yu et al, | |
PC | 1 | qPr1 | RM493‒RM562 | RIL | Zhong et al, |
[1] | Abe K, Araki E, Suzuki Y, Toki S, Saika H. 2018. Production of high oleic/low linoleic rice by genome editing. Plant Physiol Biochem, 131: 58-62. |
[2] | Aluko G, Martinez C, Tohme J, Castano C, Bergman C, Oard J H. 2004. QTL mapping of grain quality traits from the interspecific cross Oryza sativa × O. glaberrima. Theor Appl Genet, 109(3): 630-639. |
[3] | Anuradha K, Agarwal S, Rao Y V, Rao K V, Viraktamath B C, Sarla N. 2012. Mapping QTLs and candidate genes for iron and zinc concentrations in unpolished rice of Madhukar × Swarna RILs. Gene, 508(2): 233-240. |
[4] | Bai C, Capell T, Berman J, Medina V, Sandmann G, Christou P, Zhu C F. 2016. Bottlenecks in carotenoid biosynthesis and accumulation in rice endosperm are influenced by the precursor- product balance. Plant Biotechnol J, 14(1): 195-205. |
[5] | Banakar R, Alvarez Fernández Á, Abadía J, Capell T, Christou P. 2017. The expression of heterologous Fe(III) phytosiderophore transporter HvYS1 in rice increases Fe uptake, translocation and seed loading and excludes heavy metals by selective Fe transport. Plant Biotechnol J, 15(4): 423-432. |
[6] | Bashir K, Takahashi R, Akhtar S, Ishimaru Y, Nakanishi H, Nishizawa N K. 2013. The knockdown of OsVIT2 and MIT affects iron localization in rice seed. Rice, 6(1): 31. |
[7] | Bhattacharya S, Sengupta S, Karmakar A, Sarkar S N, Gangopadhyay G, Datta K, Datta S K. 2019. Genetically engineered rice with appA gene enhanced phosphorus and minerals. J Plant Biochem Biotechnol, 28(4): 470-482. |
[8] | Birla D S, Malik K, Sainger M, Chaudhary D, Jaiwal R, Jaiwal P K. 2017. Progress and challenges in improving the nutritional quality of rice (Oryza sativa L.). Crit Rev Food Sci Nutr, 57(11): 2455-2481. |
[9] | Biswas S, Ibarra O, Shaphek M, Molina-Risco M, Faion-Molina M, Bellinatti-Della Gracia M, Thomson M J, Septiningsih E M. 2022. Increasing the level of resistant starch in ‘Presidio’ rice through multiplex CRISPR-Cas9 gene editing of starch branching enzyme genes. Plant Genome, 16(2): e20225. |
[10] | Boue S M, Daigle K W, Chen M H, Cao H P, Heiman M L. 2016. Antidiabetic potential of purple and red rice (Oryza sativa L.) bran extracts. J Agric Food Chem, 64(26): 5345-5353. |
[11] | Brar D S, Virk P S, Grewal D, Slamet-Loedin I, Fitzgerald M, Khush G S. 2012. Breeding rice varieties with improved grain and nutritional quality. Qual Assur Saf Crop, 4(3): 137. |
[12] | Castle D, Ries N. 2009. Nutrition and Genomics: issues of ethics, law, regulation and communication. San Diego, CA, USA: academic press. |
[13] | Chaiyasit W, Elias R J, McClements D J, Decker E A. 2007. Role of physical structures in bulk oils on lipid oxidation. Crit Rev Food Sci Nutr, 47(3): 299-317. |
[14] | Chandel G, Banerjee S, See S, Meena R, Sharma D J, Verulkar S B. 2010. Effects of different nitrogen fertilizer levels and native soil properties on rice grain Fe, Zn and protein contents. Rice Sci, 17(3): 213-227. |
[15] | Chattopadhyay K, Behera L, Bagchi T B, Sardar S S, Moharana N, Patra N R, Chakraborti M, Das A, Marndi B C, Sarkar A, Ngangkham U, Chakraborty K, Bose L K, Sarkar S, Ray S, Sharma S. 2019. Detection of stable QTLs for grain protein content in rice (Oryza sativa L.) employing high throughput phenotyping and genotyping platforms. Sci Rep, 9: 3196. |
[16] | Chaudhary J, Patil G B, Sonah H, Deshmukh R K, Vuong T D, Valliyodan B, Nguyen H T. 2015. Expanding omics resources for improvement of soybean seed composition traits. Front Plant Sci, 6: 1021. |
[17] | Cheah T W, Ismail I, Sidek N M, Wagiran A, Abdullah R. 2013. Biosynthesis of very long polyunsaturated Omega-3 and Omega-6 fatty acids in transgenic japonica rice (Oryza sativa L.). Aust J of Crop Sci, 7(9): 1227-1234. |
[18] | Choudhary K, Choudhary O P, Shekhawat N S. 2007. Marker assisted selection: A novel approach for crop improvement. Am-Eurasian J Agron, 1(2): 26-30. |
[19] | Darnton-Hill I, Webb P, Harvey P W, Hunt J M, Dalmiya N, Chopra M, Ball M J, Bloem M W, de Benoist B. 2005. Micronutrient deficiencies and gender: Social and economic costs. Am J Clin Nutr, 81(5): 1198S-1205S. |
[20] | Descalsota-Empleo G I, Amparado A, Inabangan-Asilo M A, Tesoro F, Stangoulis J, Reinke R, Swamy B P M. 2019. Genetic mapping of QTL for agronomic traits and grain mineral elements in rice. Crop J, 7(4): 560-572. |
[21] | Deshmukh R, Singh A, Jain N, Anand S, Gacche R, Singh A, Gaikwad K, Sharma T, Mohapatra T, Singh N. 2010. Identification of candidate genes for grain number in rice (Oryza sativa L.). Funct Integr Genom, 10(3): 339-347. |
[22] | Dias J S, Ortiz R. 2012. Transgenic vegetable breeding for nutritional quality and health benefits. Food Nutr Sci, 3(9): 1209-1219. |
[23] | Dixit S, Singh U M, Abbai R, Ram T, Singh V K, Paul A, Virk P S, Kumar A. 2019. Identification of genomic region(s) responsible for high iron and zinc content in rice. Sci Rep, 9: 8136. |
[24] | Dong W, Cheng Z J, Lei C L, Wang X L, Wang J L, Wang J, Wu F Q, Zhang X, Guo X P, Zhai H Q, Wan J M. 2014a. Overexpression of folate biosynthesis genes in rice (Oryza sativa L.) and evaluation of their impact on seed folate content. Plant Foods Hum Nutr, 69(4): 379-385. |
[25] | Dong W, Cheng Z J, Xu J L, Zheng T Q, Wang X L, Zhang H Z, Wang J, Wan J M. 2014b. Identification of QTLs underlying folate content in milled rice. J Integr Agric, 13(9): 1827-1834. |
[26] | Endo A, Saika H, Takemura M, Misawa N, Toki S. 2019. A novel approach to carotenoid accumulation in rice callus by mimicking the cauliflower Orange mutation via genome editing. Rice, 12(1): 81. |
[27] | FAO. 2018. World food and agriculture: Statistical pocketbook 2018. Rome, Italy: Food and Agriculture Organization. |
[28] | Farré G, Blancquaert D, Capell T, van der Straeten D, Christou P, Zhu C F. 2014. Engineering complex metabolic pathways in plants. Annu Rev Plant Biol, 65: 187-223. |
[29] | Fiaz S, Ahmad S, Noor M, Wang X K, Younas A, Riaz A, Riaz A, Ali F. 2019. Applications of the CRISPR/Cas9 system for rice grain quality improvement: Perspectives and opportunities. Int J Mol Sci, 20(4): 888. |
[30] | Fitri I G S, Nurhasanah, Handoyo T. 2021. Genetic and phytochemical analysis of Indonesian black rice cultivars. J Crop Sci Biotechnol, 24(5): 567-578. |
[31] | Fongfon S, Pusadee T, Prom-u-thai C, Rerkasem B, Jamjod S. 2021. Diversity of purple rice (Oryza sativa L.) landraces in northern Thailand. Agronomy, 11(10): 2029. |
[32] | Garcia-Oliveira A L, Tan L B, Fu Y C, Sun C Q. 2009. Genetic identification of quantitative trait loci for contents of mineral nutrients in rice grain. J Integr Plant Biol, 51(1): 84-92. |
[33] | Garg M, Sharma N, Sharma S, Kapoor P, Kumar A, Chunduri V, Arora P. 2018. Biofortified crops generated by breeding, agronomy, and transgenic approaches are improving lives of millions of people around the world. Front Nutr, 5: 12. |
[34] | Gemede H M. 2014. Potential health benefits and adverse effects associated with phytate in foods. Food Sci Qual Manage, 27: 45. |
[35] | Ghasemzadeh A, Karbalaii M T, Jaafar H Z E, Rahmat A. 2018. Phytochemical constituents, antioxidant activity, and antiproliferative properties of black, red, and brown rice bran. Chem Central J, 12(1): 17. |
[36] | Goldstein P. 2018. HarvestPlus talks zinc rice with farmers in southeastern Bangladesh. [2019-04-14]. https://www.harvestplus.org/knowledgemarket/in-the-news/harvestplus-talks-zinc-rice-farmerssoutheasternbangladesh. |
[37] | Goto F, Yoshihara T, Shigemoto N, Toki S, Takaiwa F. 1999. Iron fortification of rice seed by the soybean ferritin gene. Nat Biotechnol, 17(3): 282-286. |
[38] | Guo D S, Ling X T, Zhou X G, Li X, Wang J Y, Qiu S, Yang Y W, Zhang B L. 2020. Evaluation of the quality of a high-resistant starch and low-glutelin rice (Oryza sativa L.) generated through CRISPR/Cas9-mediated targeted mutagenesis. J Agric Food Chem, 68(36): 9733-9742. |
[39] | Gupta R K, Gangoliya S S, Singh N K. 2015. Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. J Food Sci Technol, 52(2): 676-684. |
[40] | Ha S H, Liang Y S, Jung H, Ahn M J, Suh S C, Kweon S J, Kim D H, Kim Y M, Kim J K. 2010. Application of two bicistronic systems involving 2A and IRES sequences to the biosynthesis of carotenoids in rice endosperm. Plant Biotechnol J, 8(8): 928-938. |
[41] | Han S W, Chee K M, Cho S J. 2015. Nutritional quality of rice bran protein in comparison to animal and vegetable protein. Food Chem, 172: 766-769. |
[42] | Heuberger A L, Lewis M R, Chen M H, Brick M A, Leach J E, Ryan E P. 2010. Metabolomic and functional genomic analyses reveal varietal differences in bioactive compounds of cooked rice. PLoS One, 5(9): e12915. |
[43] | Huang X Y, Salt D E. 2016. Plant ionomics: From elemental profiling to environmental adaptation. Mol Plant, 9(6): 787-797. |
[44] | Imam M, Ismail M. 2015. An overview on germinated brown rice and its nutrigenomic implications. In: Bagchi D, Swaroop A, Bagchi M. Genomics, proteomics and metabolomics in nutraceuticals and functional Foods. 2nd edn. Hoboken, NJ, USA: Wiley: 504-517. |
[45] | Ishikawa R, Iwata M, Taniko K, Monden G, Miyazaki N, Orn C, Tsujimura Y, Yoshida S, Ma J F, Ishii T. 2017. Detection of quantitative trait loci controlling grain zinc concentration using Australian wild rice, Oryza meridionalis, a potential genetic resource for biofortification of rice. PLoS One, 12(10): e0187224. |
[46] | Ishimaru Y, Masuda H, Bashir K, Inoue H, Tsukamoto T, Takahashi M, Nakanishi H, Aoki N, Hirose T, Ohsugi R, Nishizawa N K. 2010. Rice metal-nicotianamine transporter, OsYSL2, is required for the long-distance transport of iron and manganese. Plant J, 62(3): 379-390. |
[47] | Islam M Z, Arifuzzaman M, Banik S, Hossain M A, Ferdous J, Khalequzzaman M, Pittendrigh B R, Tomita M, Ali M P. 2020. Mapping QTLs underpin nutrition components in aromatic rice germplasm. PLoS One, 15(6): e0234395. |
[48] | Iyer R, Tomar S K. 2009. Folate: A functional food constituent. J Food Sci, 74(9): R114-R122. |
[49] | Jang S, Han J H, Lee Y K, Shin N H, Kang Y J, Kim C K, Chin J H. 2020. Mapping and validation of QTLs for the amino acid and total protein content in brown rice. Front Genet, 11: 240. |
[50] | Jeong O Y, Lee J H, Jeong E G, Chun A, Bombay M, Banzon Ancheta M, Ahn S N. 2020. Analysis of QTL responsible for grain iron and zinc content in doubled haploid lines of rice (Oryza sativa) derived from an intra-japonica cross. Plant Breed, 139(2): 344-355. |
[51] | Jeong Y S, Ku H K, Kim J K, You M K, Lim S H, Kim J K, Ha S H. 2017. Effect of codon optimization on the enhancement of the β-carotene contents in rice endosperm. Plant Biotechnol Rep, 11(3): 171-179. |
[52] | Jiang H X, Lio J, Blanco M, Campbell M, Jane J L. 2010. Resistant-starch formation in high-amylose maize starch during kernel development. J Agric Food Chem, 58(13): 8043-8047. |
[53] | Johnson A A T, Kyriacou B, Callahan D L, Carruthers L, Stangoulis J, Lombi E, Tester M. 2011. Constitutive overexpression of the OsNAS gene family reveals single-gene strategies for effective iron- and zinc-biofortification of rice endosperm. PLoS One, 6(9): e24476. |
[54] | Kaneko K, Sasaki M, Kuribayashi N, Suzuki H, Sasuga Y, Shiraya T, Inomata T, Itoh K, Baslam M, Mitsui T. 2016. Proteomic and glycomic characterization of rice chalky grains produced under moderate and high-temperature conditions in field system. Rice, 9(1): 26. |
[55] | Kinoshita N, Kato M, Koyasaki K, Kawashima T, Nishimura T, Hirayama Y, Takamure I, Sato T, Kato K. 2017. Identification of quantitative trait loci for rice grain quality and yield-related traits in two closely related Oryza sativa L. subsp. japonica cultivars grown near the northernmost limit for rice paddy cultivation. Breed Sci, 67(3): 191-206. |
[56] | Kumar J, Jain S, Jain R K. 2014. Linkage mapping for grain iron and zinc content in F2 population derived from the cross between PAU201 and Palman 579 in rice (Oryza sativa L.). Cereal Res Commun, 42(3): 389-400. |
[57] | Kuwano M, Mimura T, Takaiwa F, Yoshida K T. 2009. Generation of stable ‘low phytic acid’ transgenic rice through antisense repression of the 1d-myo-inositol 3-phosphate synthase gene (RINO1) using the 18-kDa oleosin promoter. Plant Biotechnol J, 7(1): 96-105. |
[58] | Lee S, An G. 2009. Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice. Plant Cell Environ, 32(4): 408-416. |
[59] | Lee S, Kim Y S, Jeon U S, Kim Y K, Schjoerring J K, An G. 2012. Activation of rice nicotianamine synthase 2 (OsNAS2) enhances iron availability for biofortification. Mol Cells, 33(3): 269-275. |
[60] | Lee S I, Kim H U, Lee Y H, Suh S C, Lim Y P, Lee H Y, Kim H I. 2001. Constitutive and seed-specific expression of a maize lysine- feedback-insensitive dihydrodipicolinate synthase gene leads to increased free lysine levels in rice seeds. Mol Breed, 8(1): 75-84. |
[61] | Lei Y, Lu L, Liu H Y, Li S, Xing F, Chen L L. 2014. CRISPR-P: A web tool for synthetic single-guide RNA design of CRISPR- system in plants. Mol Plant, 7(9): 1494-1496. |
[62] | Liu H L, Yin Z J, Xiao L, Xu Y N, Qu L Q. 2012a. Identification and evaluation of ω-3 fatty acid desaturase genes for hyperfortifying α-linolenic acid in transgenic rice seed. J Exp Bot, 63(8): 3279-3287. |
[63] | Liu Q L, Xu X H, Ren X L, Fu H W, Wu D X, Shu Q Y. 2007. Generation and characterization of low phytic acid germplasm in rice (Oryza sativa L.). Theor Appl Genet, 114(5): 803-814. |
[64] | Liu X, Zhang C C, Wang X R, Liu Q Q, Yuan D Y, Pan G, Sun S S M, Tu J M. 2016. Development of high-lysine rice via endosperm-specific expression of a foreign LYSINE RICH PROTEIN gene. BMC Plant Biol, 16(1): 147. |
[65] | Liu Z H, Cheng F M, Zhang G P. 2005. Grain phytic acid content in japonica rice as affected by cultivar and environment and its relation to protein content. Food Chem, 89(1): 49-52. |
[66] | Long X H, Liu Q Q, Chan M L, Wang Q, Sun S S M. 2013. Metabolic engineering and profiling of rice with increased lysine. Plant Biotechnol J, 11(4): 490-501. |
[67] | Lowe R, Shirley N, Bleackley M, Dolan S, Shafee T. 2017. Transcriptomics technologies. PLoS Comput Biol, 13(5): e1005457. |
[68] | Lu K Y, Li L Z, Zheng X F, Zhang Z H, Mou T M, Hu Z L. 2008. Quantitative trait loci controlling Cu, Ca, Zn, Mn and Fe content in rice grains. J Genet, 87(3): 305-310. |
[69] | Lucca P, Hurrell R, Potrykus I. 2001. Genetic engineering approaches to improve the bioavailability and the level of iron in rice grains. Theor Appl Genet, 102(2): 392-397. |
[70] | Mahender A, Anandan A, Pradhan S K, Pandit E. 2016. Rice grain nutritional traits and their enhancement using relevant genes and QTLs through advanced approaches. SpringerPlus, 5(1): 2086. |
[71] | Maksup S, Pongpakpian S, Roytrakul S, Cha-Um S, Supaibulwatana K. 2018. Comparative proteomics and protein profile related to phenolic compounds and antioxidant activity in germinated Oryza sativa ‘KDML105’ and Thai brown rice ‘Mali Daeng’ for better nutritional value. J Sci Food Agric, 98(2): 566-573. |
[72] | Masuda H, Kobayashi T, Ishimaru Y, Takahashi M, Aung M S, Nakanishi H, Mori S, Nishizawa N K. 2013. Iron-biofortification in rice by the introduction of three barley genes participated in mugineic acid biosynthesis with soybean ferritin gene. Front Plant Sci, 4: 132. |
[73] | Mikami M, Toki S, Endo M. 2015. Comparison of CRISPR/Cas9 expression constructs for efficient targeted mutagenesis in rice. Plant Mol Biol, 88(6): 561-572. |
[74] | Naqvi S, Zhu C F, Farre G, Ramessar K, Bassie L, Breitenbach J, Perez Conesa D, Ros G, Sandmann G, Capell T, Christou P. 2009. Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proc Natl Acad Sci USA, 106(19): 7762-7767. |
[75] | Naqvi S, Farré G, Sanahuja G, Capell T, Zhu C F, Christou P. 2010. When more is better: Multigene engineering in plants. Trends Plant Sci, 15(1): 48-56. |
[76] | Norton G J, Deacon C M, Xiong L Z, Huang S Y, Meharg A A, Price A H. 2010. Genetic mapping of the rice ionome in leaves and grain: Identification of QTLs for 17 elements including arsenic, cadmium, iron and selenium. Plant Soil, 329(1): 139-153. |
[77] | Oakley Jr G P, Bell K N, Weber M B. 2004. Recommendations for accelerating global action to prevent folic acid-preventable birth defects and other folate-deficiency diseases:Meeting of experts on preventing folic acid-preventable neural tube defects. Birth Defects Res A Clin Mol Teratol, 70(11): 835-837. |
[78] | Paine J A, Shipton C A, Chaggar S, Howells R M, Kennedy M J, Vernon G, Wright S Y, Hinchliffe E, Adams J L, Silverstone A L, Drake R. 2005. Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat Biotechnol, 23(4): 482-487. |
[79] | Pandit A A, Shah R A, Husaini A M. 2018. Transcriptomics: A time-efficient tool with wide applications in crop and animal biotechnology. J Pharmacogn Phytochem, 7: 1701-1704. |
[80] | Parashar R, Afzal S, Mishra M, Singh N K. 2023. Improving biofortification success rates and productivity through zinc nanocomposites in rice (Oryza sativa L.). Environ Sci Pollut Res, 30(15): 44223-44233. |
[81] | Paul S, Ali N, Gayen D, Datta S K, Datta K. 2012. Molecular breeding of Osfer2 gene to increase iron nutrition in rice grain. GM Crops Food, 3(4): 310-316. |
[82] | Perera I, Seneweera S, Hirotsu N. 2018. Manipulating the phytic acid content of rice grain toward improving micronutrient bioavailability. Rice, 11: 4. |
[83] | Pinson S R M, Tarpley L, Yan W G, Yeater K, Lahner B, Yakubova E, Huang X Y, Zhang M, Guerinot M L, Salt D E. 2015. Worldwide genetic diversity for mineral element concentrations in rice grain. Crop Sci, 55(1): 294-311. |
[84] | Pradhan S K, Pandit E, Pawar S, Naveenkumar R, Barik S R, Mohanty S P, Nayak D K, Ghritlahre S K, Sanjiba Rao D, Reddy J N, Patnaik S S C. 2020. Linkage disequilibrium mapping for grain Fe and Zn enhancing QTLs useful for nutrient dense rice breeding. BMC Plant Biol, 20(1): 57. |
[85] | Prom-u-thai C, Rerkasem B. 2020. Rice quality improvement: A review. Agron Sustain Dev, 40: 28. |
[86] | Prom-u-thai C, Rashid A, Ram H, Zou C Q, Guilherme L R G, Corguinha A P B, Guo S W, Kaur C, Naeem A, Yamuangmorn S, Ashraf M Y, Sohu V S, Zhang Y Q, Dias Martins F A, Jumrus S, Tutus Y, Yazici M A, Cakmak I. 2020. Simultaneous biofortification of rice with zinc, iodine, iron and selenium through foliar treatment of a micronutrient cocktail in five countries. Front Plant Sci, 11: 589835. |
[87] | Raboy V. 2003. myo-Inositol-1,2,3,4,5,6-hexakisphosphate. Phytochemistry, 64(6): 1033-1043. |
[88] | Ramli N S, Md Zin N H. 2015. Proteomic analysis of rice seed storage proteins in relation to nutrient quality of three different commercial rice types. J Teknol, 77(24): 7-11. |
[89] | Regina A, Bird A, Topping D, Bowden S, Freeman J, Barsby T, Kosar-Hashemi B, Li Z Y, Rahman S, Morell M. 2006. High- amylose wheat generated by RNA interference improves indices of large-bowel health in rats. Proc Natl Acad Sci USA, 103(10): 3546-3551. |
[90] | Ren Z, Qi D, Pugh N, Li K, Wen B, Zhou R, Xu S H, Liu S Q, Jones A R. 2019. Improvements to the rice genome annotation through large-scale analysis of RNA-seq and proteomics data sets. Mol Cell Proteom, 18(1): 86-98. |
[91] | Ricachenevsky F K, Vasconcelos M W, Shou H X, Johnson A A T, Sperotto R A. 2019. Editorial: Improving the nutritional content and quality of crops: Promises, achievements, and future challenges. Front Plant Sci, 10: 738. |
[92] | Ritchie H, Roser M. 2017. Micronutrient Deficiencies. Geneva, Swiss: World Health Organization (WHO). |
[93] | Ronald P C. 2014. Lab to farm: Applying research on plant genetics and genomics to crop improvement. PLoS Biol, 12(6): e1001878. |
[94] | Saha S, Chakraborty M, Padhan D, Saha B, Murmu S, Batabyal K, Seth A, Hazra G C, Mandal B, Bell R W. 2017. Agronomic biofortification of zinc in rice: Influence of cultivars and zinc application methods on grain yield and zinc bioavailability. Field Crops Res, 210: 52-60. |
[95] | Saravanan P, Davidson N C, Schmidt E B, Calder P C. 2010. Cardiovascular effects of marine omega-3 fatty acids. Lancet, 376: 540-550. |
[96] | Sarkar A, Singh A A, Agrawal S B, Ahmad A, Rai S. P. 2015. Cultivar specific variations in antioxidative defense system, genome and proteome of two tropical rice cultivars against ambient and elevated ozone. Ecotoxicol Environ Saf, 115: 101-111. |
[97] | Schramm R, Abadie A, Hua N, Xu Z M, Lima M. 2007. Fractionation of the rice bran layer and quantification of vitamin E, oryzanol, protein, and rice bran saccharide. J Biol Eng, 1(1): 9. |
[98] | Siddiqui F, Salam R A, Lassi Z S, Das J K. 2020. The intertwined relationship between malnutrition and poverty. Front Public Health, 8: 453. |
[99] | Smith M R, Myers S S. 2019. Global health implications of nutrient changes in rice under high atmospheric carbon dioxide. GeoHealth, 3(7): 190-200. |
[100] | Stangoulis J C R, Huynh B L, Welch R M, Choi E Y, Graham R D. 2007. Quantitative trait loci for phytate in rice grain and their relationship with grain micronutrient content. Euphytica, 154: 289-294. |
[101] | Storozhenko S, De Brouwer V, Volckaert M, Navarrete O, Blancquaert D, Zhang G F, Lambert W, van der Straeten D. 2007. Folate fortification of rice by metabolic engineering. Nat Biotechnol, 25(11): 1277-1279. |
[102] | Sun D W, Cen H Y, Weng H Y, Wan L, Abdalla A, El-Manawy A I, Zhu Y M, Zhao N, Fu H W, Tang J, Li X L, Zheng H K, Shu Q Y, Liu F, He Y. 2019. Using hyperspectral analysis as a potential high throughput phenotyping tool in GWAS for protein content of rice quality. Plant Methods, 15: 54. |
[103] | Sun Y W, Jiao G A, Liu Z P, Zhang X, Li J Y, Guo X P, Du W M, Du J L, Francis F, Zhao Y D, Xia L Q. 2017. Generation of high- amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes. Front Plant Sci, 8: 298. |
[104] | Swamy B P M, Descalsota G I L, Nha C T, Amparado A, Inabangan- Asilo M A, Manito C, Tesoro F, Reinke R. 2018. Identification of genomic regions associated with agronomic and biofortification traits in DH populations of rice. PLoS One, 13(8): e0201756. |
[105] | Swanson D, Block R, Mousa S A. 2012. Omega-3 fatty acids EPA and DHA: Health benefits throughout life. Adv Nutr, 3(1): 1-7. |
[106] | Tan Y F, Sun M, Xing Y Z, Hua J P, Sun X L, Zhang Q F, Corke H. 2001. Mapping quantitative trait loci for milling quality, protein content and color characteristics of rice using a recombinant inbred line population derived from an elite rice hybrid. Theor Appl Genet, 103(6): 1037-1045. |
[107] | Tian Y S, Wang B, Peng R H, Xu J, Li T, Fu X Y, Xiong A S, Gao J J, Yao Q H. 2019. Enhancing carotenoid biosynthesis in rice endosperm by metabolic engineering. Plant Biotechnol J, 17(5): 849-851. |
[108] | Tiwari G J, Liu Q, Shreshtha P, Li Z Y, Rahman S. 2016. RNAi- mediated down-regulation of the expression of OsFAD2-1: Effect on lipid accumulation and expression of lipid biosynthetic genes in the rice grain. BMC Plant Biol, 16(1): 189. |
[109] | Tran L S P, Kumar R. 2016. Plant quality improvement and nutrigenomics. Curr Genom, 17(3): 153-154. |
[110] | Trijatmiko K R, Dueñas C, Tsakirpaloglou N, Torrizo L, Arines F M, Adeva C, Balindong J, Oliva N, Sapasap M V, Borrero J, Rey J, Francisco P, Nelson A, Nakanishi H, Lombi E, Tako E, Glahn R P, Stangoulis J, Chadha-Mohanty P, Johnson A A T, Tohme J, Barry G, Slamet-Loedin I H. 2016. Biofortified indica rice attains iron and zinc nutrition dietary targets in the field. Sci Rep, 6: 19792. |
[111] | Utasee S, Jamjod S, Lordkaew S, Prom-U-Thai C. 2022. Improve anthocyanin and zinc concentration in purple rice by nitrogen and zinc fertilizer application. Rice Sci, 29(5): 435-450. |
[112] | Vasconcelos M, Datta K, Oliva N, Khalekuzzaman M, Torrizo L, Krishnan S, Oliveira M, Goto F, Datta S K. 2003. Enhanced iron and zinc accumulation in transgenic rice with the ferritin gene. Plant Sci, 164(3): 371-378. |
[113] | Wang M, Wang S B, Liang Z, Shi W M, Gao C X, Xia G M. 2018. From genetic stock to genome editing: Gene exploitation in wheat. Trends Biotechnol, 36(2): 160-172. |
[114] | Wijaya D N, Susanto F A, Purwestri Y A, Ismoyowati D, Nuringtyas T R. 2017. NMR metabolite comparison of local pigmented rice in Yogyakarta. Indones J Biotechnol, 22(2): 68-75. |
[115] | Wong H W, Liu Q, Sun S M. 2015. Biofortification of rice with lysine using endogenous histones. Plant Mol Biol, 87(3): 235-248. |
[116] | Wu F F, Yang N, Touré A, Jin Z Y, Xu X M. 2013. Germinated brown rice and its role in human health. Crit Rev Food Sci Nutr, 53(5): 451-463. |
[117] | Wu T Y, Gruissem W, Bhullar N K. 2019. Targeting intracellular transport combined with efficient uptake and storage significantly increases grain iron and zinc levels in rice. Plant Biotechnol J, 17(1): 9-20. |
[118] | Yang M, Lu K, Zhao F J, Xie W B, Ramakrishna P, Wang G Y, Du Q Q, Liang L M, Sun C J, Zhao H, Zhang Z Y, Liu Z H, Tian J J, Huang X Y, Wang W S, Dong H X, Hu J T, Ming L C, Xing Y Z, Wang G W, Xiao J H, Salt D E, Lian X M. 2018. Genome- wide association studies reveal the genetic basis of ionomic variation in rice. Plant Cell, 30(11): 2720-2740. |
[119] | Yang Q Q, Zhang C Q, Chan M L, Zhao D S, Chen J Z, Wang Q, Li Q F, Yu H X, Gu M H, Sun S S M, Liu Q Q. 2016. Biofortification of rice with the essential amino acid lysine: Molecular characterization, nutritional evaluation, and field performance. J Exp Bot, 67(14): 4285-4296. |
[120] | Yang Y H, Guo M, Li R D, Shen L, Wang W, Liu M, Zhu Q, Hu Z, He Q W, Xue Y, Tang S Z, Gu M H, Yan C J. 2015. Identification of quantitative trait loci responsible for rice grain protein content using chromosome segment substitution lines and fine mapping of qPC-1 in rice (Oryza sativa L.). Mol Breed, 35(6): 130. |
[121] | Ye X D, Al-Babili S, Klöti A, Zhang J, Lucca P, Beyer P, Potrykus I. 2000. Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science, 287: 303-305. |
[122] | Yin Z J, Liu H L, Dong X B, Tian L H, Xiao L, Xu Y N, Qu L Q. 2014. Increasing α-linolenic acid content in rice bran by embryo- specific expression of ω3/Δ15-desaturase gene. Mol Breed, 33(4): 987-996. |
[123] | Yoo S C. 2017. Quantitative trait loci controlling the amino acid content in rice (Oryza sativa L.). J Plant Biotechnol, 44(4): 349-355. |
[124] | Yu T Q, Jiang W Z, Ham T H, Chu S H, Lestari F, Lee J H, Kim M K, Xu F R, Han L Z, Dai L Y, Koh H J. 2008. Comparison of grain quality traits between japonica rice cultivars from Korea and Yunnan Province of China. J Crop Sci Biotechnol, 11(2): 135-140. |
[125] | Yu Y H, Li G, Fan Y Y, Zhang K Q, Min J, Zhu Z W, Zhuang J Y. 2009. Genetic relationship between grain yield and the contents of protein and fat in a recombinant inbred population of rice. J Cereal Sci, 50(1): 121-125. |
[126] | Zaplin E S, Liu Q, Li Z Y, Butardo V M, Blanchard C L, Rahman S. 2013. Production of high oleic rice grains by suppressing the expression of the OsFAD2-1 gene. Funct Plant Biol, 40(10): 996-1004. |
[127] | Zhang M, Pinson S R M, Tarpley L, Huang X Y, Lahner B, Yakubova E, Baxter I, Guerinot M L, Salt D E. 2014. Mapping and validation of quantitative trait loci associated with concentrations of 16 elements in unmilled rice grain. Theor Appl Genet, 127(1): 137-165. |
[128] | Zhao G C, Zhang Y X, Sun S Y, Xie M X, Hu C Y, Shi Y Q, Shi J X, Li J Y. 2019. Identification of the biochemical characteristics of developing giant embryo rice grains using non-targeted metabolomics. J Cereal Sci, 85: 70-76. |
[129] | Zhong M, Wang L Q, Yuan D J, Luo L J, Xu C G, He Y Q. 2011. Identification of QTL affecting protein and amino acid contents in rice. Rice Sci, 18(3): 187-195. |
[130] | Zhu L J, Gu M H, Meng X L, Cheung S C K, Yu H X, Huang J, Sun Y, Shi Y C, Liu Q Q. 2012. High-amylose rice improves indices of animal health in normal and diabetic rats. Plant Biotechnol J, 10(3): 353-362. |
[131] | Zhu Q L, Yu S Z, Zeng D C, Liu H M, Wang H C, Yang Z F, Xie X R, Shen R X, Tan J T, Li H Y, Zhao X C, Zhang Q Y, Chen Y L, Guo J X, Chen L T, Liu Y G. 2017. Development of ‘purple endosperm rice’ by engineering anthocyanin biosynthesis in the endosperm with a high-efficiency transgene stacking system. Mol Plant, 10(7): 918-929. |
[1] | Li Qianlong, Feng Qi, Wang Heqin, Kang Yunhai, Zhang Conghe, Du Ming, Zhang Yunhu, Wang Hui, Chen Jinjie, Han Bin, Fang Yu, Wang Ahong. Genome-Wide Dissection of Quan 9311A Breeding Process and Application Advantages [J]. Rice Science, 2023, 30(6): 552-565. |
[2] | Ji Dongling, Xiao Wenhui, Sun Zhiwei, Liu Lijun, Gu Junfei, Zhang Hao, Matthew Tom Harrison, Liu Ke, Wang Zhiqin, Wang Weilu. Translocation and Distribution of Carbon-Nitrogen in Relation to Rice Yield and Grain Quality as Affected by High Temperature at Early Panicle Initiation Stage [J]. Rice Science, 2023, 30(6): 598-612. |
[3] | Prathap V, Suresh Kumar, Nand Lal Meena, Chirag Maheshwari, Monika Dalal, Aruna Tyagi. Phosphorus Starvation Tolerance in Rice Through Combined Physiological, Biochemical, and Proteome Analyses [J]. Rice Science, 2023, 30(6): 613-631. |
[4] | Serena Reggi, Elisabetta Onelli, Alessandra Moscatelli, Nadia Stroppa, Matteo Dell’Anno, Kiril Perfanov, Luciana Rossi. Seed-Specific Expression of Apolipoprotein A-IMilano Dimer in Engineered Rice Lines [J]. Rice Science, 2023, 30(6): 587-597. |
[5] | Kankunlanach Khampuang, Nanthana Chaiwong, Atilla Yazici, Baris Demirer, Ismail Cakmak, Chanakan Prom-U-Thai. Effect of Sulfur Fertilization on Productivity and Grain Zinc Yield of Rice Grown under Low and Adequate Soil Zinc Applications [J]. Rice Science, 2023, 30(6): 632-640. |
[6] | Fan Fengfeng, Cai Meng, Luo Xiong, Liu Manman, Yuan Huanran, Cheng Mingxing, Ayaz Ahmad, Li Nengwu, Li Shaoqing. Novel QTLs from Wild Rice Oryza longistaminata Confer Strong Tolerance to High Temperature at Seedling Stage [J]. Rice Science, 2023, 30(6): 577-586. |
[7] | Lin Shaodan, Yao Yue, Li Jiayi, Li Xiaobin, Ma Jie, Weng Haiyong, Cheng Zuxin, Ye Dapeng. Application of UAV-Based Imaging and Deep Learning in Assessment of Rice Blast Resistance [J]. Rice Science, 2023, 30(6): 652-660. |
[8] | Md. Forshed Dewan, Md. Ahiduzzaman, Md. Nahidul Islam, Habibul Bari Shozib. Potential Benefits of Bioactive Compounds of Traditional Rice Grown in South and Southeast Asia: A Review [J]. Rice Science, 2023, 30(6): 537-551. |
[9] | Raja Chakraborty, Pratap Kalita, Saikat Sen. Phenolic Profile, Antioxidant, Antihyperlipidemic and Cardiac Risk Preventive Effect of Pigmented Black Rice Variety Chakhao poireiton in High-Fat High-Sugar Induced Rats [J]. Rice Science, 2023, 30(6): 641-651. |
[10] | Nazaratul Ashifa Abdullah Salim, Norlida Mat Daud, Julieta Griboff, Abdul Rahim Harun. Elemental Assessments in Paddy Soil for Geographical Traceability of Rice from Peninsular Malaysia [J]. Rice Science, 2023, 30(5): 486-498. |
[11] | Monica Ruffini Castiglione, Stefania Bottega, Carlo Sorce, Carmelina SpanÒ. Effects of Zinc Oxide Particles with Different Sizes on Root Development in Oryza sativa [J]. Rice Science, 2023, 30(5): 449-458. |
[12] | Ammara Latif, Sun Ying, Pu Cuixia, Noman Ali. Rice Curled Its Leaves Either Adaxially or Abaxially to Combat Drought Stress [J]. Rice Science, 2023, 30(5): 405-416. |
[13] | Liu Qiao, Qiu Linlin, Hua Yangguang, Li Jing, Pang Bo, Zhai Yufeng, Wang Dekai. LHD3 Encoding a J-Domain Protein Controls Heading Date in Rice [J]. Rice Science, 2023, 30(5): 437-448. |
[14] | Lu Xuedan, Li Fan, Xiao Yunhua, Wang Feng, Zhang Guilian, Deng Huabing, Tang Wenbang. Grain Shape Genes: Shaping the Future of Rice Breeding [J]. Rice Science, 2023, 30(5): 379-404. |
[15] | Zhang Guomei, Li Han, Liu Shanshan, Zhou Xuming, Lu Mingyang, Tang Liang, Sun Lihua. Water Extract of Rice False Smut Balls Activates Nrf2/HO-1 and Apoptosis Pathways, Causing Liver Injury [J]. Rice Science, 2023, 30(5): 473-485. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||